帐号    密码      
您当前所在的位置:  首页 >> 师资队伍 >> 信息与计算科学系 >> 正文
背景颜色:        
纪翠翠
字体【 】  【编辑日期:2021-03-01】  【点击:】  【作者:】   【 关 闭 】    【 打 印 】    【 返 回 】

纪翠翠,女,青岛大学特聘教授,硕士研究生导师。主要研究领域:分数阶偏微分方程的应用及其高效数值算法

学习与进修经历:

20153-20199月,在东南大学数学专业攻读博士,获理学博士学位

20129-20153月,在东南大学计算数学专业攻读硕士,获理学硕士学位

20089-20126菏泽学院数学与应用数学专业攻读学士,理学学士学位

20179-20189,美国南卡罗来纳大学数学系,访问学者

工作经历:

201911至今,青岛大学数学与统计学院,副教授

201910-201911,青岛大学数学与统计学院,教师

荣誉称号:

2017年获博士研究生国家奖学金

2014获硕士研究生国家奖学金

2010获国家奖学金

 

主持的科研项目:

名称

项目来源

负责人

执行

期限

资助

金额

进展

情况

3

基于分数阶本构方程的热传导模型及其高效数值算法研究

国家自然科学基金

青年项目

纪翠翠

2021.01-

2023.12

24.00

在研

2

纳米尺度分数阶热传导模型及高精度数值算法

编号YBJJ1716

东南大学优秀博士

学位论文基金

纪翠翠

2017.03-

2019.03

2.00

结题

1

时间分数阶偏微分方程高精度数值解法及其应用

编号:KYLX15_0106

江苏省研究生

创新计划项目

纪翠翠

2015.05-

2017.12

2.00

结题

参与的科研项目:

名称

项目来源

负责人

执行

 期限

资助

金额

进展

情况

1

纳米尺度多层薄膜热传导数学模型及其高精度数值算法

编号11671081

国家自然科学基金

面上项目

孙志忠

4/10

2017.01-

2020.12

48.00

主要学术论文:

[9] Z.-Z.Sun, C.-C. Ji, R.-L. Du, A new analytical technique of the L-type difference schemes for time fractional mixed sub-diffusion and diffusion-wave equations, Applied Mathematics Letters, Vol.102, No.106115, 2020. (SCI)

[8] C.-C. Ji, W.-Z. Dai, Z.-Z. Sun, Numerical schemes for solving the time-fractional dual-phase-lagging heat conduction model in a double-layered nanoscale thin film, Journal of Scientific Computing, Vol.81, No.3, 2019, pp. 1767-1800. (SCI)

[7] C.-C. Ji, W.-Z. Dai, Z.-Z. Sun, Numerical method for solving the time-fractional dual-phase-lagging heat conduction equation with the temperature-jump boundary condition, Journal of Scientific Computing, Vol.75, No.3, 2018, pp. 1307-1336. (SCI)

[6] C.-C. Ji, R. Du, Z.-Z. Sun*, Stability and convergence of difference schemes for multi-dimensional parabolic equations with variable coefficients and mixed derivatives, International Journal of Computer Mathematics, Vol. 95, No. 1, 2018, pp. 255-277. (SCI)

[5] C.-C. Ji, Z.-Z Sun*, An unconditionally stable and high-order convergent difference scheme for Stokes’ first problem for a heated generalized second grade fluid with fractional derivative, Numerical Mathematics-Theory Methods and Applications,Vol. 10, No. 3, 2017, pp. 597-613.(SCI)

[4] X.-M. Gu, T.-Z. Huang, C.-C Ji, B. Carpentieri, A.A. Alikhanov, Fast iterative method with a second-order implicit difference scheme for time-space fractional convection-diffusion equation, Journal of Scientific Computing, Vol. 72, No. 3, 2017, pp. 957-985. (SCI, ESI 被引论文)

[3] C.-C. Ji, Z.-Z. Sun*, Z.-P. Hao, Numerical algorithms with high spatial accuracy for the fourth-order fractional sub-diffusion equations with the first Dirichlet boundary conditions, Journal of Scientific Computing, Vol. 66, No. 3, 2016, pp. 1148-1174. (SCI)

[2] C.-C. Ji, Z.-Z. Sun*, The high-order compact numerical algorithms for the two-dimensional fractional sub-diffusion equation, Applied Mathematics and Computation, Vol. 269, 2015, pp. 775–791. (SCI)

[1] C.-C. Ji*, Z.-Z. Sun, A high-order compact finite difference scheme for the fractional sub-diffusion equation, Journal of Scientific Computing, Vol. 64, No. 3, 2015, pp. 959–985. (SCI, ESI 被引论文)

 

邀请报告:

[3] 纪翠翠, Heat conduction with fractional dual-phase-lagging model at the nanoscale, 安徽工程大学, 中国, 安徽, 2019/5/23-5/24.

[2] C.-C. Ji, Numerical method for solving the fractional dual-phase-lagging heat conduction equation with the temperature-jump boundary condition, SIAM-SEAS 2018, UNC Chapel Hill, North Carolina, USA, 9-11 March, 2018.

[1] 纪翠翠, High accuracy finite difference schemes for fractional sub-diffusion equations, 山东大学、山东师范大学, 中国, 济南, 2017/6/19-6/20.

联系方式:

办公地点:青岛大学浮山校区励行楼(西七)212

E-mail:  cuicuiahuan@163.com


 

上一条:姜茂盛
下一条:李柏纬

关闭