纪翠翠,女,中共党员,青岛大学特聘教授。主要研究领域:分数阶偏微分方程的应用及其高效数值方法。
学习与进修经历:
2015年3月-2019年9月,在东南大学数学专业攻读博士,获理学博士学位
2012年9月-2015年3月,在东南大学计算数学专业攻读硕士,获理学硕士学位
2017年9月-2018年9月,获国家留学基金委资助访问***
工作经历:
2019年10月至今,青岛大学数学与统计学院,讲师
荣誉称号:
2017年获博士研究生国家奖学金
2014年获硕士研究生国家奖学金
2010年获国家奖学金
2009年获国家励志奖学金
主持的科研项目:
序 号 |
名称 |
项目来源 |
负责人 |
执行 期限 |
资助 金额 |
进展 情况 |
2 |
纳米尺度分数阶热传导模型及高精度数值算法 (编号:YBJJ1716) |
东南大学优秀博士 学位论文基金 |
纪翠翠 |
2017.03- 2019.03 |
2.00万 |
结题 |
1 |
时间分数阶偏微分方程高精度数值解法及其应用 (编号:KYLX15_0106) |
江苏省研究生 创新计划项目 |
纪翠翠 |
2015.05- 2017.12 |
2.00万 |
结题 |
参与的科研项目:
序 号 |
名称 |
项目来源 |
负责人 |
执行 期限 |
资助 金额 |
进展 情况 |
1 |
纳米尺度多层薄膜热传导数学模型及其高精度数值算法 (编号:11671081) |
国家自然科学基金 面上项目 |
孙志忠 (4/10) |
2017.01- 2020.12 |
48.00万 |
在研 |
主要学术论文:
[9]C.-C. Ji, W.-Z. Dai, Z.-Z. Sun,Numerical schemes for solving the time-fractional dual-phase-lagging heatconductionmodel in a double-layered nanoscale thin film,Journal of Scientific Computing,https://doi.org/10.1007/s10915-019-01062-6, 2019. (SCI, IF:2.37)
[8]Z.-Z.Sun,C.-C. Ji, R.-L. Du, A new analytical technique of the L-type difference schemes for time fractional mixed sub-diffusion and diffusion-wave equations,Applied Mathematics Letters,https://doi.org/10.1016/j.aml.2019.106115,2019.(SCI, IF:3.487)
[7]C.-C. Ji, W.-Z. Dai, Z.-Z. Sun, Numerical method for solving the time-fractional dual-phase-lagging heat conduction equation with the temperature-jump boundary condition,Journal of Scientific Computing, Vol.75, No.3, 2018, pp. 1307-1336.(SCI, IF:2.37)
[6]C.-C. Ji, R. Du, Z.-Z. Sun*, Stability and convergence of difference schemes for multi-dimensional parabolic equations with variable coefficients and mixed derivatives,International Journal of Computer Mathematics, Vol. 95, No. 1, 2018, pp. 255-277.(SCI, IF:1.196)
[5]C.-C. Ji,Z.-Z Sun*,An unconditionally stable and high-order convergent difference scheme for Stokes’ first problem for a heated generalized second grade fluid with fractional derivative,Numerical Mathematics-Theory Methods and Applications,Vol. 10, No. 3, 2017, pp. 597-613.(SCI,IF:1.25)
[4]X.-M. Gu, T.-Z. Huang,C.-C Ji, B. Carpentieri, A.A. Alikhanov, Fast iterative method with a second-order implicit difference scheme for time-space fractional convection-diffusion equation,Journal of Scientific Computing, Vol. 72, No. 3, 2017, pp. 957-985.(SCI, IF:2.37)
[3]C.-C. Ji, Z.-Z. Sun*, Z.-P. Hao, Numerical algorithms with high spatial accuracy for the fourth-order fractional sub-diffusion equations with the first Dirichlet boundary conditions,Journal of Scientific Computing, Vol. 66, No. 3, 2016, pp. 1148-1174.(SCI, IF:2.37)
[2]C.-C. Ji, Z.-Z. Sun*, The high-order compact numerical algorithms for the two-dimensional fractional sub-diffusion equation,Applied Mathematics and Computation,Vol. 269, 2015, pp. 775–791. (SCI, IF:3092)
[1]C.-C. Ji*, Z.-Z. Sun, A high-order compact finite difference scheme for the fractional sub-diffusion equation,Journal of Scientific Computing,Vol. 64, No. 3, 2015, pp. 959–985.(SCI, IF:2.37,ESI高被引论文)
邀请报告:
[4]纪翠翠,Heat conduction with fractional dual-phase-lagging model at the nanoscale,安徽工程大学,中国,安徽, 2019/5/23-5/24.
[3] C.-C. Ji,Numerical method for solving the fractional dual-phase-lagging heat conduction equation with the temperature-jump boundary condition, SIAM-SEAS 2018, UNC Chapel Hill, North Carolina, USA, 9-11 March, 2018.
[2]纪翠翠,High accuracy finite difference schemes for fractional sub-diffusion equations,山东大学,中国,济南, 2017/6/19.
[1]纪翠翠,High accuracy finite difference schemes for fractional sub-diffusion equations,山东师范大学,中国,济南, 2017/6/20.
联系方式:
办公地点:青岛大学浮山校区励行楼(西七)212室
E-mail: cuicuiahuan@163.com