李柏纬
职称:讲师/青岛大学青年卓越人才工程/硕士生导师
联系方式:青岛大学浮山校区励行楼(西七)223室
邮箱:wade0701@hotmail.com
QQ号:2632578695
个人简介:
男,1990年4月出生,博士,青岛大学青年卓越人才,硕士研究生导师。博士毕业于台湾海洋大学。研究方向为偏微分方程的数值解及其工程应用,着重于计算模型的研发与数值算法的改良,特别是计算流体力学领域为主。近年发表学术论文30篇,其中28篇SCI检索论文、2篇EI检索论文、1篇ESI高被引论文。学术论文共计被引用656次(Google Scholar),H指数和i10指数分别为14和21。授权发明专利一项。主持山东省自然科学基金1项,参予国家自然科学基金面上项目2项、省部级项目1项。曾获2017年优秀毕业生−台湾斐陶斐荣誉奖章,2020获颁Engineering Analysis with Boundary Elements最佳论文奖及高被引用奖,2022年获邀担任西班牙国家统计研究所(Spanish National Statistics Institute)博士论文外国评议委员。
研究方向:
1.偏微分方程的数值解
2.无网格算法的前沿研究与工程应用
3.计算流体力学
4.水利及海洋工程
教育经历:
2008/09至2012/06:台湾海洋大学,河海工程学系,工学学士
2012/09至2017/06:台湾海洋大学,河海工程学系,水资源与环境工程组,工学博士(硕博连读)
工作经历:
2017年12月-2021年11月:河海大学,力学与材料学院,博士后
2019年12月-至今:青岛大学,数学与统计学院,讲师
学术兼职:
1.SCI期刊Applied Sciences的专题客座编辑
2.国际无网格会议《International Workshop on Meshless Method》学术委员会委员(2019-)
3.国际永续能源与建筑研讨会《International Construction, Energy Environment & Sustainability Conference》学术委员会委员(2019-)。
4.西班牙国家统计研究所(Spanish National Statistics Institute)博士论文外国评议委员(2022)
科研奖励:
1.2020年Engineering Analysis with Boundary Elements年度最佳论文奖
2.2020年Engineering Analysis with Boundary Elements年度高被引用奖
3.2017年斐陶斐荣誉奖章-优秀博士毕业生
科研项目:
主持:
1.2022-01至2024-12,山东省自然科学基金,青年基金,ZR2021QA012,浅水波方程的并行化无网格迎风格式计算模型研究,在研
2.2011-07至2012-02,中国台湾科技部,大学生专题研究计划,100-2815-C-019 -009-E,以稳定且高效率之数值模拟方法分析由密度差异驱动之地下水流运动问题,已结题
参予:
1.2023/01至2025/12,山东省自然科学基金委员会,山东省高等学校青创科技计划项目, 2022KJ140,计算力学与工程仿真创新团队,在研,参与
2.2022/01至2025/12,国家自然科学基金委员会,面上项目, 52175236,考虑不确定性与多场耦合的内燃机活塞无网格多尺度优化方法研究,在研,参与
3.2017/01至2020/12,国家自然科学基金委员会,面上项目, 51679042,内激励动力源作用下水-管-桥流激振动力学行为及耦合机制研究,结题,参与
4.2016/08至2017/07,中国台湾科技部,一般研究计划,NSC 105-2221-E-019-047-,以广义有限差分法建立数值波浪水槽并研究非线性波浪传递现象,台湾科技部,结题
5.2015-08至2016-07,台湾科技部,优秀年轻学者研究计划, NSC 104-2221-E-019-047- ,结合广义有限差分法与图形处理器平行计算以发展高效率之浅水波方程式模拟模式,结题
6.2014-08至2015-07,中国台湾科技部,优秀年轻学者研究计划,NSC 103-2221-E-019-055- ,浅水波方程式之创新与平行化模拟模式研发,结题
7.2013-03至2013-12,中国台湾建筑研究所,一般研究计划, 10261D0003,极端降雨造成都市洪灾影响评估数值模式之研究,结题
8.2013-01至2013-12,中国台湾农田水利会,一般研究计划,102農科-8.2.4-利-b2(12),灌溉渠网水力模拟模式研发,结题
9.2012-08至2013-07,中国台湾科技部,一般研究计画, NSC 101-2625-M-019-005-,建立高精度与高效能之洪氾预警整合系统--子计划:建立高效能二维淹水模式(III),结题
期刊论文:
1.P.W. Li*, The space–time generalized finite difference scheme for solving the nonlinear equal-width equation in the long-time simulation.Applied Mathematics Letters. 132, 101881, 2022.
2.P.W. Li*, J. K. Grabski, C.M. Fan and F.J Wang, A space-time generalized finite difference method for solving unsteady double-diffusive natural convection in fluid-saturated porous media.Engineering Analysis with Boundary Elements. 142, 138-152, 2022.
3.S.F Cheng, F.J Wang*, P.W. Li, W.Z Qu, Singular boundary method for 2D and 3D acoustic design sensitivity analysis.Computers & Mathematics with Applications. 119, 371-386, 2022.
4.Y.N. Xing, Lina Song*, P.W Li, A generalized finite difference method for solving biharmonic interface problems.Engineering Analysis with Boundary Elements. 132, 159-173, 2022.
5.P.W. Li*, C.M. Fan and J. K. Grabski, A meshless generalized finite difference method for solving shallow water equations with the flux limiter technique.Engineering Analysis with Boundary Elements. 131, 159-173, 2021.
6.M.G. Shao, Lina Song, P.W. Li, A generalized finite difference method for solving Stokes interface problems.Engineering Analysis with Boundary Elements. 132, 50-64, 2021.
7.F.J. Wang*, Z.C. Chen, P.W. Li and C.M. Fan, Localized singular boundary method for solving Laplace and Helmholtz equations in arbitrary 2D domains.Engineering Analysis with Boundary Elements. 129, 82-92, 2021.
8.P.W. Li*, Space–time generalized finite difference nonlinear model for solving unsteady Burgers’ equations.Applied Mathematics Letters. 114, 106896, 2021
9.S.Liu, P.W. Li*, C.M. Fan and Y. Gu, Localized method of fundamental solutions fortwo- and three-dimensional transient convection-diffusion equations,Engineering Analysis with Boundary Elements. 124, 237-244, 2021.
10.W.Z. Qu*, L. Sun and P.W. Li, Bending analysis of simply supported and clamped thin elastic plates by using a modified version of the LMFS, 185, 347-357, 2021
11.X. Yue, F.J. Wang*, P.W. Li and C.M. Fan, Local non-singular knot method for large-scale computation of acoustic problems in complicated geometries, 84, 128-143, 2021
12.Lina Song, P.W. Li*, Y. Gu and C.M. Fan, Generalized finite difference method for solving stationary 2D and 3D Stokes equations with a mixed boundary condition.Computers and Mathematics with Applications.80, 1726-1743, 2020
13.Z.J. Fu*, W.H. Chu, M. Yang, P.W. Li and C.M. Fan, Estimation of tumor characteristics in a skin tissue by a meshless collocation solver.International Journal of Computational Methods.2041009, 2020.
14.T. Zhang*,Z.H. Lin, G.Y. Huang, C.M. Fan and P.W. Li,Numerical simulation of improved Boussinesq model by generalized finite difference method.Ocean engineering.198, 106975, 2020.
15.Z.J. Fu*, J. Zhang, P.W. Li and J.H. Zheng,A semi-Lagrangian meshless framework for numerical solutions of two-dimensional sloshing phenomenonEngineering Analysis with Boundary Elements.112, 58-67, 2020
16.Z.J. Fu*, Z.C. Tang, H.T. Zhao, P.W. Li and T. Rabczuk, The numerical study on the coupled unsteady nonlinear convection-diffusion equations using a generalized finite difference collocation approach.The European Physical Journal Plus,134:272, 2019.
17.P.W. Li*, Z.J. Fu, Y. Gu and Lina Song, The generalized finite difference method for the inverse Cauchy problem in linear elasticity.International Journal of Solids and Structures, 174-175, 69-84, 2019.
18.P.W. Li*, W. Chen, Z.J. Fu and C.M. Fan, Generalized finite difference method for solving the double-diffusive natural convection in fluid-saturated porous media.Engineering Analysis with Boundary Elements, 95, 175-186, 2018.
19.T. Zhang*, Y.J. Huang, L. Liang, C.M. Fan and P.W. Li, Numerical solutions of mild slope equation by generalized finite difference method.Engineering Analysis with Boundary Elements, 88, 1-13, 2018.
20.P.W. Li and C.M. Fan*, The generalized finite difference method for two-dimensional shallow water equations.Engineering Analysis with Boundary Elements,80, 58-71, 2017.
21.T. Zhang, Y.F. Ren, Z.Q. Yang, C.M. Fan* and P.W. Li, Application of generalized finite difference method to propagation of nonlinear water waves in numerical wave flume.Ocean Engineering, 123, 278-290, 2016.
22.T. Zhang, Y.F. Ren, C.M. Fan* and P.W. Li, Simulation of two-dimensional sloshing phenomenon by generalized finite difference method.Engineering Analysis with Boundary Elements,63, 82-91, 2016.
23.C.M. Fan*, Y.K. Huang, P.W. Li and Y.T. Lee, Numerical solutions of two-dimensional Stokes flows by the boundary knot method.CMES: Computer Modeling in Engineering & Sciences, 105, 491-515, 2015.
24.C.M. Fan* and P.W. Li, Numerical solutions of direct and inverse Stokes problems by the method of fundamental solutions and the Laplacian decomposition,Numerical Heat Transfer, Part B: Fundamentals, 68, 204-233, 2015.
25.C.M. Fan*, P.W. Li and W. Yeih, Generalized finite difference method for solving two-dimensional inverse Cauchy problems,Inverse Problems in Science & Engineering, 23(5), 737–759, 2015.
26.P.W. Li, C.M. Fan*, C.Y. Chen and C.Y. Ku, Generalized finite difference method for numerical solutions of density-driven groundwater flows,CMES: Computer Modeling in Engineering & Sciences, 101(5), 319-350, 2014.
27.C.M. Fan* and P.W. Li, Generalized finite difference method for solving two-dimensional Burgers’ equations,Procedia Engineering, 79, 55-60, 2014. (EI)
28.C.M. Fan*, Y.K. Huang,P.W. Li and C.L. Chiu, Application of the generalized finite-difference method to inverse biharmonic boundary-value problems,Numerical Heat Transfer, Part B: Fundamentals, 65, 129-154, 2014.
中文期刊论文:
1.李艾伦,傅卓佳,李柏纬,陈文.含肿瘤皮肤组织传热分析的广义有限差分法,力学学报, 2018, 50: 1198-1205.
研讨会论文:
1.P.W. Li*, Numerical solutions of one- and two-dimensional Burgers’ equations by space-time coupled generalized finite difference method, The 5thInternational Workshop on Meshless method, Qingdao, China, 23-25 August, 2019.
2.P.W. Li*, Z.J. Fu and C.M. Fan, The space-time generalized finite difference method for solving two-dimensional Burgers’ equations, The 10th International Conference on Computational Methods(ICCM2019), Singapore, 9-13 July, 2019.
3.P.W. Li*, W. Chen, Y. Gu, C.M. Fan, The generalized finite difference method for the inverse Cauchy problem in linear elasticity,The 9th International Conference on Computational Methods(ICCM2018), Rome, Italy, 6-10 August, 2018.
4.P.W. Li and C.M. Fan, A Meshless Numerical Model with Flux Limiter for Two-dimensional Shallow Water Equations, The 7thInternational Conference on Computational Methods, Berkeley, California, United States, August 1-4, 2016.
5.C.M. Fan, T.H. Li, C.C. Chang, P.W. Li, Y.K. Huang, Generalized finite difference method for solving inverse Cauchy problems,The 5th Asia-Pacific International Conference on Computational Methods in Engineering (ICOME2015) and the 11th Chinese National Conference on Computational Methods in Engineering, Hangzhou, China, October 11-13, 2015.
6.P.W. Li and C.M. Fan*, A characteristic-based meshless model for numerical solutions of shallow water equations,The 5th Asia-Pacific International Conference on Computational Methods in Engineering (ICOME2015) and the 11th Chinese National Conference on Computational Methods in Engineering, Hangzhou, China, October 11-13, 2015.
7.P.W. Li and C.M. Fan*, The Generalized Finite Difference Method for Two-dimensional Shallow Water Equations,2015 International Workshop on Typhoon and Flood- APEC Experience Sharing on Hazardous Weather Eventsand Risk Management, Taipei, Taiwan, May 27-28, 2015.
8.C.M. Fan, Y.K. Huang, P.W. Li and Y.T. Lee, Numerical solutions of two-dimensional Stokes flow by the boundary knot method, International Conference on Computational & Experimental Engineering and Sciences, Changwon, Korea, June 12-17, 2014.
9.P.W. Li, C.M. Fan, C.Y. Chen and C.Y. Ku, Generalized finite difference method for numerical solutions of density-driven groundwater flow, International Conference on Computational & Experimental Engineering and Sciences, Changwon, Korea, June 12-17, 2014.
10.C.M. Fan, Y.K. Huang, P.W. Liand C.L. Chiu, Generalized finite difference method for solving inverse problems governed by fourth-order partial differential equations, The 37thNational Conference on Theoretical and Applied Mechanics and The 1stInternational Conference on Mechanics, Hsinchu, Taiwan, Nov 8-9, 2013.
11.C.M. Fan and P.W. Li, Generalized finite difference method for solving two-dimensional Burgers’ equations, The 37thNational Conference on Theoretical and Applied Mechanics and The 1stInternational Conference on Mechanics, Hsinchu, Taiwan, Nov 8-9, 2013.
12.C.M. Fan, P.W. Li, C.C. Chang and W. Yeih, Applications of the generalized finite difference method for inverse Cauchy problems, The 37thNational Conference on Theoretical and Applied Mechanics and The 1stInternational Conference on Mechanics, Hsinchu, Taiwan, Nov 8-9, 2013.
13.C.M. Fan and P.W. Li, The method of fundamental solutions and Laplacian decomposition for solving two-dimensional Stokes problems, ICOME2012/JASCOME2012, Kyoto, Japan, Dec 12-14, 2012.
发明专利:
1.傅卓佳;张瑾;李柏纬;汤卓超;一种晃动水槽对波浪形态影响的模拟方法, 2022-9-23,中国, ZL 2019 1 0268619.3
其他学习或学术经历:
1.2015/03至2015/04:福州大学,土木学院,访问学者,助理研究员。
2.2016/02至2016/04:青岛大学,数学与统计学院,访问学者,助理研究员。